CUDA编程的基本步骤

CUDA编程的基本步骤:

1. 编写Kernel函数

2. 为主机和设备需要使用的数据分配内存

3. 拷贝主机内存的数据到设备内存

4. 调用kernel函数执行计算

5. 把计算后的数据结果从设备内存拷贝回主机内存

6. 释放为主机和设备分配的内存

 

举一个最简单的例子:

#include <stdio.h>
#include <cuda_runtime.h>
#include "helper_cuda.h"

//声明一个kernel 函数
__global__ void vectprAdd(const float *A, const float *B, float *C, int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if ( i < numElements )
    {
        C[i] = A[i] + B[i];
    }
}

int main(void)
{
    int numElements = 50000;
    size_t size = numElements * sizeof(float);

    //分配主机内存
    float *h_A = (float*)malloc(size);
    float *h_B = (float*)malloc(size);
    float *h_C = (float*)malloc(size);

    //初始化主机数据
    for(int i=0; i<numElements; i++)
    {
        h_A[i] = rand() / (float)RAND_MAX;
        h_B[i] = rand() / (float)RAND_MAX;
    }

    //分配设备内存
    float *d_A, *d_B, *d_C;
    cudaMalloc((void**)&d_A, size);
    cudaMalloc(&d_B, size);
    cudaMalloc(&d_C, size);

    //拷贝主机数据到设备
    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

    //调用kernel函数执行计算
    int threadsPerBlock = 256;
    int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
    vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

    //拷贝数据结果到主机内存
    cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

    //释放设备内存
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);

    //释放主机内存
    free(h_A);
    free(h_B);
    free(h_C);
}